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Summary 

Using methods which have been employed for obtaining bounds 

on continuous failure distributions, bounds on lattice distributions 

are derived under the Increasing (decreasing) failure rate assumptions, 

The discrete bounds are convenient In a number of applications such 

as life table analysis and reliability theory. 



1.  Introduction 

A discrete distribution of a random variable X Is called 

a lattice distribution If there exist real numbers a and h > 0 

such that every possible value of X can be represented In the 

form a + kh , where k runs through Integer values. We call h 

the span of the distribution.  The geometric, binomial and Polsson 

distributions are important examples of lattice distributions. 

It seems that there Is essentially no literature on Chebyshev 

type bounds for lattice distributions. Of course, the classical 

Chebyshev bounds are attained by discrete distributions.  However, 

these need not be lattice.  The general method used by Karlln and 

Studden and others  (12, 11] for obtaining Chebyshev type bounds 

can, of course. In theory be applied to lattice distributions.  However, 

we will restrict ourselves to a special class of lattice distributions 

where these methods do not provide sharp bounds. 

For convenience assume that a ■ 0 , h ■ 1 and let 

p o p[x - k] ; (k » 0,1,2, ) .  Define the failure rate r(k) 
XL 

for lattice distributions as 

r(k) - -^—  If     ^  P, > 0 

2 1 2 Pj       M 

k-l 
and note that  0 ^ r(k) ^ 1 . Let F(k) ■  2 p. and F(k) ■ 

1 - F(k) - 2 p . We say that F Is lattice IFR (lattice DFR) 
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If and only if r(k) Is non-decreasing (non-Increasing) in k . 

Note that it is shown in [5] that F is lattice IFR (lattice DFR) 

iff log F(k) is concave (convex).  Further equivalent definitions 

of lattice IFR (lattice DFR) distributions in terms of Polya 

frequency function of order two and total positivity of order two have 

been discussed in [1,2,5,10].  Note that the negative binomial 

distribution 

>l N\ a /.  xk-a 
'k  v a-l ^ p  (l-p)   ' a > 0 

k - 0,1,2,  

is lattice IFR (increasing failure rate) for a > 1 and lattice DFR 

(decreasing failure rate) for a< 1 .  For a ■ 1 , it is the 

geometric distribution with a constant failure rate and hence it 

belongs to both IFR and DFR classes.  The geometric distribution 

is the only distribution with this property in the discrete case. 

The binomial and Poisson distributions are lattice IFR. 

Lattice distributions occur naturally in many applications. 

Fatigue failure data obtained under dynamic loading is commonly 

recorded in terms of the number of cycles to failure. For many 

structures subject to fatigue failure, a lattice IFR distribution 

would seem appropriate. A mathematical model describing such types 

of failure has been discussed in [5].  As another example we mention 

human mortality data where it is common to record time of death 

to the nearest year or the nearest month. For certain types of 

cancer mortality data a decreasing failure rate seems appropriate, [U]. 

In any situation where grouped data is derived from a continuous 

IFR(DFR) distribution, a lattice IFR (lattice DFR) distribution will be 

appropriate. 
-2- 



2.    Bounds on Lattice Distributions 

2.1    IFR Bound; 

Let    F   denote a left continuous distribution function such 

that    F(o')" 0 .    Bounds on   1-F   under the IFR (DFR) assumption in 

the continuous case when the first moment   IJL     is given can be 

found In [2].    In the IFR case,  the lower bound is given by Theorem 1. 

Theorem 1; Let   F   be a left continuous distribution.    Let    F 

be IFR with mean   |JL   , then 

i      e' ^ e   Ma     ;    t < ^ F(t) >><--—- ^ 

The inequality is sharp. 

A similar bound exists for lattice distributions and we shall 

discuss this after proving the following lemma. 

Lemma;   Let F be a lattice distribution with mean n- . Assume 
k _ 1 

that F is IFR and let  s. ■  Z F(i) then for t ^ p. 
K        i-1 l 

(1) F(t)^   F(t-k) ( 1 - *}tm}l ) ; k .l,2,...,t-l . 
^1       t-k-1 

Proof;        We shall prove (l) by induction.     By definition, 
<X 00 

FOO ■ i p. > so that log F(k) - log ( 2 p ) . Nore that the 
i-it 1 i-k 1 

fuuctlon log F(k) is defined only for integer values.  By linear 

interpolation we can define log F(k) for any real value of k as 

shown in Figure 2.1. 
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Since we assume that F is IFR, It follows that log F(k) 

is concave. Hence there exists a supporting line to log F(k) as 

shown in Figure 2.1. 



LogFdO 

LUI 

FIGURE 2.1   SHOWING   SUPPORTING   LINE   FOR    LOG F(k) 



Thus by log concavity, we have 

log F(k) ^ (L1+1- L^k - iLi+1+ (i+1)^ j k - 1,1+1,... 

But L- - log F(i) and L       = log F(l+l) , therefore 

F(k)^ 
L F(i) J 

1+1 

[F(l+1)]: 
for k » 1,1+1,... 

Let s = F(i) + F(2) +...+ F(k) where 8=0.  Then we have 

00 1-1 » 

^ Y F(k) - 2,^)+ ^F(k) 

k-1 k»l k-1 

00 

<.s 1-1        LJ L F/ x 

k»l        U/ 

1+1 

00 

,   + fa) V |a±ii 
11 L^L pm 

2(111 
[FCl+l)]1 

-k-i 

_ 2 
F(l) 

obtain 

(2) 

F(l)  - F(l+l) 

F(1+1)^F(1)   --7^— 
^1    1-1 

i—'L F(l)    J 

k-1      v   ; 

.  Solving for F(l+l) , we 

From (2) with 1-t-l , It follows that (l) holds for k - 1 . Now 

assume that (l) Is true for k«n-l ; (n ^ t) i.e.; 

(5) F(t)^F(t-n+l)(l -li2£*a 
V-l    t-n 

vn-1 

0(F(t-n+l) 

,, v   .    x   xn-l 
where 0(x) » x(l - — ) 

^l"£t-n 



Note that   0l(x) 
^1    t-ri ^l^t-n 

^0     If     x(   ^^ 

M-. 'BJ. 1    t"n To Shov;    x   <   
■ ••       n 

Hl'Vn 
By definition    x » F(t-n+l) ^ 1 , hence we need only show    —    ^ l . 

U1-8t.n          kU-t+n 
But    s       <^ t-n    iiiiplies    ^. —   ^ 1    since    t ^   n, 

by assumption. 

Thus we can substitute for   F(t-n+l)    in (3) the bound given 

by (2) with   is»t-n   and obtain 

F(t):>    F(t-n)    (l - l^ 
n.   t-n-l 

F(t.„) (l - ^    > 
n-1 

^-8t-n 

Noting    sA      » s^      ,   + F(t-n)    and letting    c = 1 -    \t'n< ^     t-n        t-n-l        N      ' ^ Lu -s^ Wn-1 
the above Inequality becomes 

F{t) ^ F(t-n) c 

(l     Kt-n)      V 
V_VVnI£ 

-8 

-1 n-1 

^"Vn 
-8 

^"Bt-n-l 

2 n-1 
- F(t-n) c  [ ^ ]        - cnF(t-n)    . 

This is (l) for    k o n , and the induction is complete. 

Theorem 2; If   F(t)    is a lattice IF« distribution with mean 
00 

m ^ 1   placing mass    p.     at   k ■ 0,1,2,...    and   F(t) ■   2    p    ; then 
^ K k-t    ^ 
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F(t):> for t ^ n 

for t 

for t 

+ 1 

+ 1 

Where   [p.- ] denotes the ^ eatest Integer contained in n . The 

Inequality Is sharp. 

Proof;   Since log F(k) Is concave In k and noting flguie 2.1 

for 1-0 , we see that 

log F(k) <. I^k 

or     F(k)^[F(l)] 

00 00 

Thus M-i - X ^k^ ^ A ^^ iü 

{k)    or  F(i) ^ - 

k-1      k«l 
l-F(l) 

^1 

Now consider (l) with k«t-l ; this gives 

F(t) ^F(l) 1 - KIL r\ V(F(1))  . 

Note that rM  - (1- ,7 )t"2(l- ^) ^ 0 If t 1 p..  and n ^ 1 

(since x ^ l) , and thus from (U), we have 

?(t) i «i±) - (1-^)t 
for t 1^ 

-8- 



This bound for t ^ p.  Is attained by the geometric distribution; i.e., 

"kT ̂  (A)k 
■H^  i-H^ 

t K *  K))± fC.f , . ,      . 

We conjecture that 

r V^] 

F(t) ^   <|1-Hi1'tM1] 

0 

for      t 

for      t 

+ 1 

+ 1 

where    [\L,]    denotes the greatest Integer contained in   \L.   . 

For    t >  [p... ]  + 1 ,  it is easily seen that the bound is attained by 

G(t) 

tl    (Hj 

-  [^1 

>  [^1 

+ 1 

+ 1 

The upper bound on 1-F for the continuous distribution when F 

is IFR is given by the following theorem, 

Iheorem 3;    Let F denote a left continuous distribution.  Assume 

that F is IFR with mean ^ , then 

F(t)^ 
^      -wt 

t^   ^ 

t >   ^ 

-wt 
where   w    depends on    t    and satisfies    1-w^ju   ■ e        .    The inequality 

is sharp    [2]  . 
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An analogous bound exists for lattice dlstrl out Ions and Is given by 

Theorem k: Let F denote a lattice distribution. Assume that 

F is IFR with mean [L.   ,  then 

wd   t 
1 

^ q       ;     t > n1 

■q 

Is sharp. 

where    q   depends on    t    and satisfies    q( ) = ix,   .     Tte inequality 

Proof:        Let us define, 

k 

Kk) -   { 
<l ;      k « 0,1,2,. ..,t 

k > t    . > 

-10- 



FIGURE 2.2   LOGARITHMIC CURVE OF THE FUNCTIONS F(k)AND GOO 
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Note that    log G(k)    Is linear and    log F(k)    Is concave, 

hence   F(k)    can cross    G(k)    at most once for   k < t . 

If    t > p..   ,  we can always determine    q.   so that 

00 

X 500 . Ul 
k^l 

t 
k 

or ;   q i 
k^l 

.     t 1-q  . 
or      q(   ) ■ ^L which is solvable for q . 

Since, F(k) and G(k) are distribution functions with the same 

mean  p. , they must cross at least once for 0 < k ^ t , 

_ k 
Thus, for this choice of q , F(k)  necessarily crosses q 

-/    x t exactly once from above for   0 < k < t .     Therefore,    F(t) < q 

unless    F    coincides identically with    G .     The degenerate distribution 

concentrating at    yi.     provides the upper bound for    t ^ p.      when 

n      is an integer. 

Since    G    is also IFR, the bound is sharp. 

2.2    DFR Bound: 

It is shown in [2] that the sharp lower bound on 1-F where F 

is a left continuous DFR distribution with known mean, say |i1 , is zero 

and  the sharp upper bound is given by the following theorem. 

Theorem 3:    Let F be left continuous.  Assume that F 

is DFR with mean ^u , then 
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F(t)<.   < 

t 

.-1 
Hl 

•>     t<n1 

Hie Inequality Is sharp. 

Similarly, for lattice distributions the sharp lower bound on 

1-F   where    F   is a lattice DFR distribution with known mean     p. 

is zero.     For example,  consider 

G(k) -       < 
r » 
L - 

k < 0 

k - 0 , 1 , 2 ,  

where a is arbitrarily small and 0 ^ q ^ 1 . Choose q such that 

G has mean p, . Then G is DFR with a Jump at the origin and. 

G(k) ^ a for all k ■ 0,1,2,... . Letting a -► 0 , we see that the 

sharp lower bound is zero. 

Thus, for lattice DFR distributions only the upper bound on 

F(t) is given. 

Theorem 6:    Let F be a lattice distribution. Assume that F Is 

DFR with mean ^ , then 

F(t)<.       <^ 

M t 

Hl+1 t < ^ 

(^ £r);   ^ 
The inequality is sharp. 

-15- 



c 

00 

Proof;   By definition, F(k) - Z p. . 

We remark that the function log F(k) is defined only for integer 

values. By linear interpolation, we can define log F(k) for any 

real value of k as shown in figure 2. 3. 

Since we assume that F is DFR, it follows that log F(k) is 

convex, and therefore, there exists a supporting line to log F(k), 

say, at k » t . 
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y = Loq F(k) 

I 

FIGURE 2.3   SHOWING  SUPPORTING LINE FOR DFR DISTRIBUTION 
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•■ 

Let a denote the Intersection of the supporting line with y-axis 

and let L a log F(t) . Obviously, L < a ^ 0 and the equation of 

/L-a.k 
h- supporting line is y « ("t""' + 0 • ^hu8 we have* 

(5)     logF(k)^(^)k +a ;  k^O 

or      F(k) ^ e 

00 

V ak-»a L-a 
Hence,   ji-. ^ / e ""       where   a - 

k»l 

e 

e .      i a 
a 

1-e 
since    e  < 1 

That is 

a 

e -1 

SolvJ.ng for L , we obtain 

O 

L<,a - t log(l + -777 ) • 

a 
Let    0(a) - a - t log(l + — ) so that 

n. 

(6) L ^ 0(a) for some   a , L < a ^ 0 , 

or L ^ max 0(a)    . 
L<Q^0 
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Note that 

t 
0I(a) - i - 

e m* 1 

and ^ 
-tu, e 

Since 0"(a) < 0 , we know that 0(a) is strictly concave and hence 

it has a maxima, say, at a = cr* . 

Thus, from (6) we have, 

(7)     L10(a*) 

so it remains to obtain a* . or* can be found by equating O'Ca) 

to zero; that is 

e Vi* 1 

This gives us, 

cr* - log( ^—)    for t ^ ^ . 

Note that for t < |i-i 

Also we have 

0"(a) < 0    for any a where L < a <_ 0 . 
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Thus, for t < ^i , we have 0l(a) > 0 and 0"(a) < 0 which shows 

that p Is strictly Increasing concave function and hence the 

maximum of 0(a) Is achieved at the origin. 

That Is 

(8) To if t < ^ 

Cf» a  < ^1 
I log( ^f- )     If t ^^ 

Using  (8),  the expression in (7) becomes, 

or 

L<1 

0(0) If    t < ^ 

L<L 

]_0tlog(i )] if   t^^ 

if   t < ^ 

iog[(A)(^] lf t^ 

But    L ■ log F(t)  ,   so finally we have 

(9) 

F(t) ^   < 

if    t < ^ 

(.^I)(ü) if     t>LL Vt-1M   t ^^1 

We observe that equality in (9) for t < p.  Is attained by the 

1 / Hl k 
geometric distribution n ■ •— {- ) ; k = 0,1,2,... and for 
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t ^ p. equality In (9) Is attained by the geooetrlc distribution 

—       Mn  t-1 k 
G where G(k) - ^O* "t~^ ' k " 1'2'•,• • H*1106» the Inequalities 

given by (9) are sharp. 

2. 3 Coaqparlson of the Continuous and Lattice Bounds; 

Comparing Theorem 1 and Theorem 2,  ve remark that for p_ 

fixed, the continuous upper bound Is everywhere smaller than the 

lattice upper bound. Similar comparlslons hold for Theorem 5 and 

Theorem 6. 
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5, Application of Bounds 

3.1 Motivation to Life Table Analysis: 

We note that the failure rate function, r(t) is familiar 

in other branches of science and is known by a variety of names. 

In the life sciences it is used by actuaries under the name of 

"Force of Mortality" to compute mortality tables [15].  The Important 

work of life table analysis is to calculate survival rate, i.e., 

the proportion of persons surviving a specified interval of time. 

Various methods for calculating survival rate have been discussed 

in several research papers by Ederer [7]; Ederer, Cutler and Axtell 

[8], Berkson and Gage [k],  etc. Some functions that have been 

used to define the force of mortality are Gompertz's formula and 

Makeham's formula.  A detailed discussion concerning the estimation 

of the parameters in Makeham's law of mortality can be found in 

Grenander's paper [9]. 

Grenander remarks in his paper that we should specify carefully 

the probability assumptions to be used in mortality studies.  The 

basic assumption is that our data forms a sample of Independent 

observations of stochastic variables, with the same probability 

distribution except when sampling errors axe serious.  Further 

Grenander remarks in his paper that mortality estimates will be 

used to compute premiums, reserves and so on, and it is the future 

mortality that is of interest for making a prognosis for several 

decades forward in time.  Since the development of the mortality 

depends upon factors that are very difficult to handle, it is likely 

that only a rough prognosis cam be made. 

-20- 



We arc  Interested in giving upper bounds on survival probability 

which will be useful in the life sciences in order to compare 

mortality rates in different populations.  To give such bounds, 

which crji be used for all ages, we need to have some a priori 

information about the failure rate function such as IFB er DFR, as 

we shall see in a cancer study. 

3.2 Application of bounds to a cancer study: 

Patient survival is generally accepted as the principal criterion 

for measuring the effectiveness of treatment in cancer.  The American 

College of Surgeons requires the maintenance of a cancer registration 

and follow up program  for approval of a hospital cancer program. We 

shall investigate a particular type of cancer from a large number of 

cancer studies given in [6] in order to apply the boundr. 

We are interested in giving upper bounds for the survival 

probability (also called survival rate).  Data of table 1 is taken 

from [6, p. 51f ], which represents the observed survival rates 

for breast and genito-urinary organs cancer for the period 19^2-56 

of both sexes. For this particular type of cancer there were 41,157 

patients at the beginning of the year 19^2.  The observed survival 

rates were calculated by the usual formula and is shown in Table 1. 

Our aim is to use this data to give an upper bound for the 

survival rate and to extend it for all ages. 
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TABLE - 1 

Observed Survival Rates, 
Breast and Genlto-Urinary Organs Cancer, 

Detailed Sites hy  All Ages, 19I12 - 1956, Both Sexes. 

Years after 
diagnosis. 

t 

Observed Survival 
rates In percentage, 

F(t)                LogeF(t) 

Difference 

Lo«eF(t+l)-LogeF(t; 

0 100.0 k. 60517 - 0.53407 

1 71.6 k, 27110 - 0.18849 

2 59.5 1+. 08261 - 0.15715 

5 51.7 5.9^546 - 0.11682 

h 1^,0 5.8286I1 - 0.09814 

5 kl.l 5.73050 - 0.09291 

6 58.0 5.63759 - 0.08P24 

7 55.0 5.55535 - 0.0YY19 

8 32.4 3.47816 - O.O7696 

9 50.0 5. 40120 - O.O7616 

10 27.8 3. 32501+ - 0.07080 

11 25.9 3.25421+ - O.O6789 

12 2k. 2 5.18635 - O.O7285 

13 22.5 3.11352 - 0.06425 

Ik 21.1 5.04927 - 0.05354 

15 20.0 2.99573 

Since successive differences of the function Log F(t) are 

Increasing In t except at t = 12 , we can assume that the successive 

differences of the function Log F(t) are Increasing In t for all e 

values of    t .    Tbe graph of the function    LogeF(t)    Is shown In 

Figure 5.1. 
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2        3      4        5       6       7       8       9       10      II      12     13     14 
YEARS   AFTER   DIAGNOSIS,      t 

FIGURE 3.1 



From successive differences of the function log F(t) and from 

the graph It Is clear that log F(t) Is convex and therefore we claim 

that F Is DFR. 

Now we shall obtain upper bounds for 1-F using Theorem 5 and 

Theorem 6 and compare them. 

We need to estimate ^ , the mean of F . Let (L  denote an 

estimate of ^u . Thus, 

00 

t-1 
I fM 
Ik 00 

^ F(t) + Y FM 
t-1 t> Ik 

- ^ + M^' , say. 

From the data of Table 1, we have 

1+ 
^ 

t-i 

Hence, It remains to calculate p." .  From the graph of the function 

log F(t) it is clear that for t ^ 8 , F(t) has an exponential form 

and therefore, |x{' can be approximated by 

00 

^i " L   F(t) 
t>iu 
/CO 

g(x)dx where    g(x)    is an exponential curve. 
ik 

.  x -a(x-liO for    x > 14 . 
Let    g(x) - ce    v ' ^ 

So. lo« g(3t) - log c - a(x-lU) Implies log c is equal to the height at ' ' 0e        e e 
-2k- 



x ™ 14 and -a Is the slope of the curve log g(x) ,  This gives 
e 

c • 21.1 and em estimate of -a Is given by 

Log F(9) - log F(12) 
-a -   e 9 _ 12 

e  - - 0.07162 . 

Hence, 
00 

.     -    , (21.l)e0-0^62(X-1^dx 
^1       Jlk 

- (21.1) ["e0-0716^ 

- 29k.6 . 

Finally, we obtain 

fL   - 527.2 + 29^.6 

- 8a.8 

or ^i   " ^•21® years , 

Using an estimate of the mean of   F   as    8.218, ve shall 

calculate upper bounds for   1-F    In Table 2. 
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TABLE - 2 

Upper Bounds on Survival Rate, 

Years after  Observed survival Upper bounds on F(t) Upper bounds on F(t) 
diagnosis.   rates in ^ .      using Th. 6 in # .   using Th. 5 in # . 

t F(t) 

0 100.0 100.00 100.00 

1 71.6 89.15 88.54 

2 59.3 79.^7 78.57 

5 pi. 7 70.85 69.42 

k 46.0                             65.16 61.47 

5 41.7 56.51 54.42 
6 58.O 50.20 48.19 

7 55.0 44.75 42.66 

8 52.4 59.89 57.78 

8.218                   ...31.9 50.94  56.79 
{By Interpolation) 

9 50.0 55.55 55.58 

10 27.8                          51.80 50.25 

11 25.9 28.79 27.48 

12 24.2 26.29 25.18 

15 22.5                                  24.16 25.24 

14 21.1 22.59 21.58 

15 20.0 20.82 20.15 

From the last two columns we observe that the upper bounds on 

F(t)    obtained by Theorem 6 are everywhere larger than those obtained 

by Theorem 5. These bounds can be compared graphically as shown in 

Figure 5.2 and Figure 5.5. 
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SURVIVAL RATE IN PERCENTAGE,   Y 
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These results on bounds are of particular Interest In comparing 

the mortality In different populations, when a priori Information about 

the mortality function Is known. 

Suppose we are Interested In comparing the survival rates of 

two types of cancer,  say,  stomach and lung.    Let us assume that both 

have decreasing failure rate with mean   p,      and   [i     respectively.    We note 

that one of th*» means Is greater than the other say,    p_ > p.- .    Also 

note tt^'c,  the estimate of the means can be found by studying smaple 

Information.    Using Theorem 6, we can find upper bounds on survival 

rates for both stomach and lung cancer.    Then,  by comparing the upper 

bounds en stomach and lung cancer, we can estimate the greatest difference 

In survival rate for different periods, 

3.3    Application of bounds to reliability theory; 

In reliatil '.ty theory, a decreasing failure rate would seem 

to correspond to some physical mechanism of improvement with age, 

so that the longer the unit survives the less the chance of failure 

in the next unit of time.    We will discuss the reliability problem 

given in [15] by establishing the upper bound. 

Proschan was Interested in obtaining information as to the 

distribution of failure intervals for the air conditioning system 

of each member of a fleet of Boeing 720 Jet airplanes  [15],    Records 

were kept for the time of successive failures  (to the nearest hour) 

of the air conditioning system [15, p.  516]. 

First we note that it was proved in  [15]  that the failure distribution 

formed by pooling failure intervals tor a given conrponent operating 

in different types of equlpnent would be DFR.     Thus, we know that 

the data follows a DFR distribution and hence we will give an 
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upper bound on survival probability using Theorem 6.    We remark that 

an estimate of the parent mean can be estimated by sample information 

and it was found in [15] that the mean of all the failure intervals 

was 95.1^.    Since the sample size is large,  this estimate should be 

fairly accurate.    Using 95.1^ as an estimate of the parent mean, 

we give theoretical upper bound for the pooled data. 

Figure 5.14- shows the upper bounds on survival probability. 

The cross-over in the beginning for the observed survival probability 

may be due to random fluctuation. 
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